



# VIDRL & WHO

# Measles IgM Proficiency Panel 01002



# **Final Report**

Prepared by Jennie Leydon, Michaela Riddell

&

**Dr Mike Catton** 

**Director** 

**VIDRL** 

# **Table of Contents**

| Tables and Figures               | 3  |
|----------------------------------|----|
| Abbreviations                    | 4  |
| Introduction                     | 5  |
| Aims                             | 5  |
| Methods                          | 5  |
| Panel composition                | 5  |
| Validation of panel              | 6  |
| Distribution of panel            | 7  |
| Statistical Analysis             | 8  |
| Results (measles)                | 9  |
| Reporting of kit details         | 9  |
| Results analysed by kit          | 9  |
| Results analysed by panel number |    |
| Results by panel number          |    |
| Results (rubella)                | 15 |
| Reporting of kit in use          |    |
| Discrepant results               |    |
| Discussion                       | 15 |

# **Tables and Figures**

| Table 1:  | Panel composition detailing measles and rubella IgM status of panel number                                                        |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------|
| Table 2:  | Assay type used by WHO regions                                                                                                    |
| Table 3:  | Number of correct results by assay type                                                                                           |
| Table 4:  | The proportion of laboratories correctly identifying all positive and negatives by assay method used                              |
| Table 5:  | The proportion of participating laboratories achieving total scores based on positive/negative interpretation submitted to VIDRL. |
| Table 6:  | The percentage of laboratories that reported the correct result by individual panel number                                        |
| Table 7:  | Qualitative result described by laboratories for panel samples incorrectly assigned for measles                                   |
| Table 8:  | Qualitative result described by laboratories for panel samples incorrectly assigned for rubella                                   |
| Figure 1: | The global distribution of laboratories that have submitted results.                                                              |
| Figure 2: | Distribution of kit type used for measles IgM testing of panel 01002                                                              |
| Figure 3: | OD values for each positive panel sample by laboratory for laboratories using the Dade Behring assay                              |
| Figure 4: | OD values for each negative panel sample by laboratory for laboratories using the Dade Behring assay                              |
| Figure 5: | Distribution of kit type used for rubella IgM testing of panel 01002                                                              |

# **Abbreviations**

AFRO African Regional Office

ANOVA Analysis of variance

CDC Centers for Disease Control and Prevention, Atlanta, USA

EIA Enzyme immunoassay

EMRO Eastern Mediterranean Regional Office

EURO European Regional Office

N Negative

OD Optical density

P Positive

PCR Polymerase chain reaction

QA Quality assurance S/CO Sample/cut-off ratio

SEAR South East Asian Regional Office

VIDRL Victorian Infectious Diseases Reference Laboratory

WHO World Health Organization

# Measles IgM proficiency panel 2002

Panel number: 01002

#### Introduction

As the world moves towards control of measles, confirmation of clinically diagnosed measles by IgM serology will become increasingly important. Proficiency testing is an important part of measles laboratory programs as both false positive and false negative results can occur with some of the commonly used measles IgM enzyme immunoassays (EIA).

#### Aims:

- 1. To assess the proficiency of laboratories within the WHO global measles laboratory network when testing for measles IgM.
- 2. To identify problems with any assays routinely used in these laboratories.
- 3. To check the accuracy of data reporting.

#### **Methods**

### Panel composition

All samples were undiluted serum samples, comprising

- 10 Measles IgM positive (sourced from 1999/2001 measles outbreaks in Victoria, Australia)
- 5 Measles IgM negative (VIDRL staff volunteers)
- 3 Parvovirus IgM positive (Diagnostic sera)
- 2 Rubella IgM positive (Diagnostic sera)

All samples were negative for HIV, Hepatitis BsAg & Hepatitis C.

#### **WHO Panel Results**

#### **PANEL 01002**

| Sample   | Measles IgM | Rubella IgM | Diagnosis         |
|----------|-------------|-------------|-------------------|
| 01002001 | Positive    | Negative    | Measles           |
| 01002002 | Positive    | Negative    | Measles           |
| 01002003 | Positive    | Negative    | Measles           |
| 01002004 | Negative    | Negative    | Healthy volunteer |
| 01002005 | Positive    | Negative    | Measles           |
| 01002006 | Positive    | Negative    | Measles           |
| 01002007 | Negative    | Positive    | Rubella           |
| 01002008 | Positive    | Negative    | Measles           |
| 01002009 | Negative    | Negative    | Parvovirus        |
| 01002010 | Negative    | Negative    | Healthy volunteer |
| 01002011 | Negative    | Negative    | Parvovirus        |
| 01002012 | Negative    | Negative    | Healthy volunteer |
| 01002013 | Negative    | Positive*   | Healthy volunteer |
| 01002014 | Positive    | Negative    | Measles           |
| 01002015 | Positive    | Negative    | Measles           |
| 01002016 | Negative    | Negative    | Parvovirus        |
| 01002017 | Positive    | Negative    | Measles           |
| 01002018 | Negative    | Negative    | Healthy volunteer |
| 01002019 | Positive    | Negative    | Measles           |
| 01002020 | Negative    | Positive    | Rubella           |

<sup>\*</sup>False positive result

Table 1: Panel composition detailing measles and rubella IgM status of panel number

# Validation of panel

The panel was tested for Measles IgM at VIDRL using two methods:

Dade Behring Enzygnost® anti-measles virus IgM

Chemicon Light Diagnostics Measles IgM Capture Enzyme Immunoassay

Rubella IgM was tested by two methods

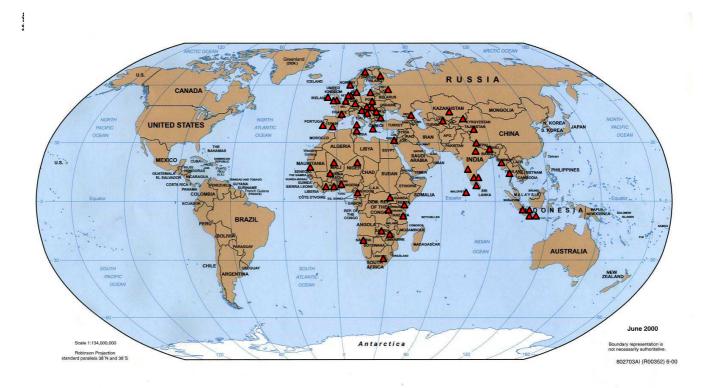
Beckman Access Chemiluminescent Rubella IgM

DiaSorin ETI-RUBEK-M reverse PLUS capture assay

# **Distribution of panel**

Results were returned from 65 laboratories.

WHO regions included:


**EMRO** 

**AFRO** 

**SEAR** 

**EURO** 

Each laboratory was assigned a unique number as results were received at VIDRL. This number is known only by VIDRL and that laboratory. Figure 1 shows the approximate site of the 65 laboratories that submitted results on the QA panel.



Laboratories participating in the measles proficiency panel-01002 NB: indicators are an approximate guide

Figure 1: The global distribution of laboratories that have submitted results.

# Measles serology

## **Statistical Analysis**

Analysis was performed by laboratory and panel number. The majority of participating laboratories (77%) used the Dade Behring Enzygnost<sup>®</sup> assay. Four laboratories used an in-house assay, one laboratory did not state the method used. The remaining 10 laboratories used a range of commercial kits (7 different methods). The proportion of correct results, based on the positive/negative interpretation reported by the laboratory, was calculated for each laboratory and according to the assay used. Results interpreted as equivocal were scored as incorrect since all sera included in the panel were clearly positive or negative, however this was not considered as serious as a false negative or false positive result.

#### The Dade Behring group

The laboratory assigned optical density (OD) values and interpretation (positive/negative) were recorded for each of the panel numbers. The positive/negative cut off was assumed to be 0.2 unless stated otherwise. OD values for all positive samples were combined for all laboratories and inspected for normality. This inspection was repeated separately for all negative samples and individually for each of the twenty panel numbers. Data were analysed using STATA 7.0 software.

As the OD values were normally distributed, the mean and standard deviation of the combined positive and combined negative OD values was calculated for each laboratory. The individual laboratory mean positive and mean negative OD value and corresponding standard deviation values were compared with the mean positive and mean negative OD value and corresponding standard deviation values calculated from combined positive and combined negative OD values for all laboratories using the Dade Behring assay method. Separate analysis of the positive and negative panel numbers, based on the laboratory designation was performed. Laboratory number 92 was excluded from this analysis since OD values were not recorded.

Laboratories were compared directly with each other and analysis of variance (ANOVA) was used to compare the mean results from each laboratory with those of other laboratories.

#### Other assay groups

Four laboratories used an in-house assay, two used the Microimmune assay and two the Seiken assay. The remaining four laboratories used a variety of assay methods. Comparisons between laboratories using assays other than Dade Behring Enzygnost® were not attempted since there were an insufficient number of laboratories using the same kit for meaningful analysis. The OD values obtained by laboratories using commercial EIA kits were plotted but no further comparisons were made.

#### **Results**

## Reporting of kit details

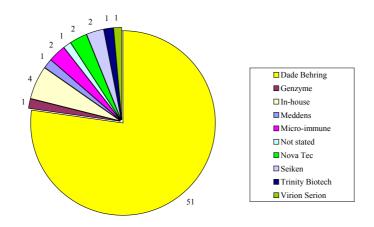
#### Lot numbers

6 laboratories did not supply any lot or reagent details (One was an in-house assay).

1 laboratory did not state the method used or any kit details

1 laboratory reported the catalogue number instead of the lot number.

#### Expiry dates


One laboratory used a kit after the recorded expiry date.

6 laboratories did not record any expiry dates (4 of these were reported as in-house assays).

#### Results analysed by kit

#### **Kit Details**

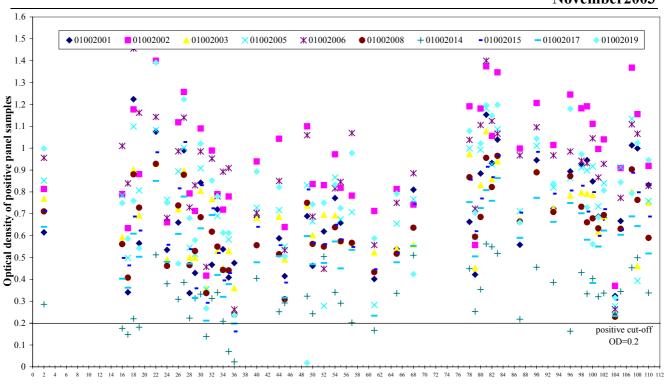
One laboratory tested the panel using two separate assay methods resulting in 66 separate sets of results.



**Figure 2:** Distribution of kit type used for measles IgM testing of panel 01002.

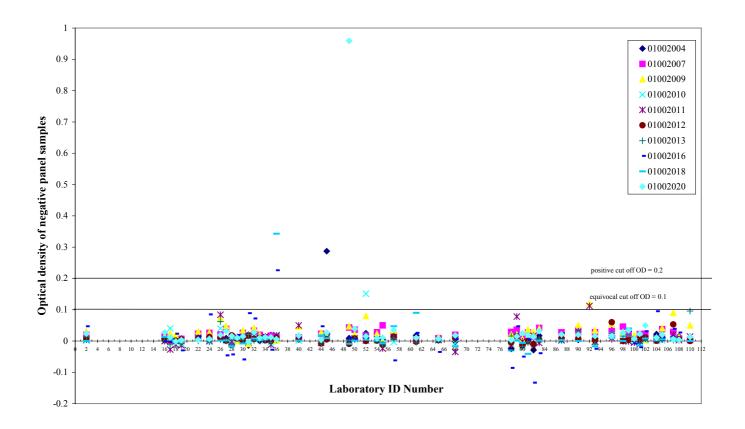
| Assay                   |      | WHO  | region |       |
|-------------------------|------|------|--------|-------|
|                         | AFRO | EMRO | EURO   | SEARO |
| Dade Behring            | 17   | 1    | 19     | 14    |
| In-house assays         |      |      | 4      |       |
| Other commercial assays |      |      | 10     |       |
| Not stated              | 1    |      |        |       |
| Total                   | 18   | 1    | 33     | 14    |

Table 2 Type of assays used by WHO region.


| Assay             | Number of laboratories | Number of samples correctly |    |    |    |    |  |  |
|-------------------|------------------------|-----------------------------|----|----|----|----|--|--|
| 115543            | using assay            | identifie                   |    |    | d  |    |  |  |
|                   |                        | 20                          | 19 | 18 | 17 | 15 |  |  |
| Dade Behring      | 51                     | 39                          | 9  | 1  | 1  | 1* |  |  |
| In house assays   | 4                      | 3                           | 1  |    |    |    |  |  |
| Other/ not stated | 11                     | 3                           | 5  | 2  | 1  |    |  |  |

<sup>\*1</sup> laboratory only tested 18 samples

**Table 3:** Number of correct results by assay type.


|                            | Laboratories Proportion of laboratories |                            | Proportion of laboratories |
|----------------------------|-----------------------------------------|----------------------------|----------------------------|
| Assay                      | (n)                                     | with all positives correct | with all negatives correct |
| Dade Behring               | 51                                      | 82%                        | 90%                        |
| Other commercial kits/ not | 11                                      | 64%                        | 64%                        |
| stated                     |                                         |                            |                            |
| In-house assays            | 4                                       | 100%                       | 75%                        |

**Table 4:** Proportion of laboratories correctly identifying all positive and negatives by assay type.



**Figure 3:** OD values for each positive sample by laboratory for laboratories using the Dade Behring assay.

Laboratory ID number



**Figure 4**: OD values for each negative sample by laboratory for laboratories using the Dade Behring assay.

# Results analysed by panel number

Forty-five (45) laboratories achieved a perfect score (20/20).

One laboratory tested for measles IgM by 2 methods.

| Score | Number of labs (%) |
|-------|--------------------|
| 20/20 | 45 (68%)           |
| 19/20 | 15 (23%)           |
| 18/20 | 3 (4.5%)           |
| 17/20 | 2 (3%)             |
| 15/20 | 1 (1.5%)           |
| TOTAL | 66                 |

**Table 5:** The proportion of participating laboratories achieving total scores based on positive/negative interpretation submitted to VIDRL.

# Results by panel number

| Panel no.  | 001  | 002  | 003 | 004 | 005 | 006 | 007 | 008  | 009  | 010  |
|------------|------|------|-----|-----|-----|-----|-----|------|------|------|
| Measles    | P    | P    | P   | N   | P   | P   | N   | P    | N    | N    |
| IgM status |      |      |     |     |     |     |     |      |      |      |
| %          |      |      |     |     |     |     |     |      |      |      |
| correct    | 98.5 | 98.5 | 100 | 94  | 97  | 100 | 100 | 98.5 | 98.5 | 98.5 |
|            |      |      |     |     |     |     |     |      |      |      |

| Panel no.             | 011  | 012 | 013 | 014 | 015  | 016 | 017  | 018  | 019 | 020  |
|-----------------------|------|-----|-----|-----|------|-----|------|------|-----|------|
| Measles<br>IgM status | N    | N   | N   | P   | P    | N   | P    | N    | P   | N    |
| % correct             | 98.5 | 100 | 100 | 85  | 98.5 | 97  | 98.5 | 95.5 | 97  | 95.5 |

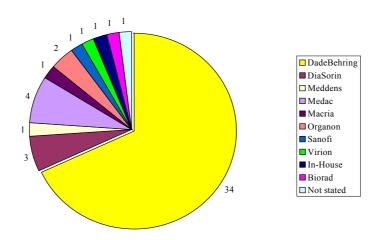
**Table 6:** Proportion of laboratories reporting correct result for each individual panel number.

# Analysis of discrepant results

| Panel no.          | 001 | 002 | 004 | 005 | 008 | 009 | 010 |
|--------------------|-----|-----|-----|-----|-----|-----|-----|
| Measles IgM status | P   | P   | N   | P   | P   | N   | N   |
| Positive           |     |     | 3   |     |     |     |     |
| Negative           |     |     |     |     |     |     |     |
| Equivocal          | 1   |     | 1   | 1   |     | 1   | 1   |
| Not tested         |     | 1   |     | 1   | 1   |     |     |
| Total              | 1   | 1   | 4   | 2   | 1   | 1   | 1   |

| Panel no.          | 011 | 014 | 015 | 016 | 017 | 018 | 019 | 020 |
|--------------------|-----|-----|-----|-----|-----|-----|-----|-----|
| Measles IgM status | N   | P   | P   | N   | P   | N   | P   | N   |
| Positive           |     |     |     | 2   |     | 3   |     | 3   |
| Negative           |     | 4   |     |     |     |     | 2   |     |
| Equivocal          | 1   | 6   | 1   |     | 1   |     |     |     |
| Not tested         |     |     |     |     |     |     |     |     |
| Total              | 1   | 10  | 1   | 2   | 1   | 3   | 2*  | 3*  |

<sup>\*</sup> One laboratory tested the panel by 2 methods and reversed samples 19 and 20.


**Table 7:** Result classification for panel samples not correctly identified by reporting laboratories for measles IgM.

# Rubella serology

Twenty laboratories tested the whole panel for Rubella IgM, and twenty-eight laboratories tested between 8 and 11 samples.

#### **Kit Details**

Two laboratories used kits after the recorded expiry date.



**Figure 5**: Distribution of kit type used for rubella IgM testing of panel 01002.

# Analysis of discrepant results

| Panel No.            | 005     | 006     | 009        | 010     | 011        | 016        | 019     |
|----------------------|---------|---------|------------|---------|------------|------------|---------|
| Diagnosis            | Measles | Measles | Parvovirus | Healthy | Parvovirus | Parvovirus | Measles |
|                      |         |         |            | adult   |            |            |         |
| Rubella IgM<br>POS   | 1       | 2       |            |         | 1          |            | 1*      |
| Rubella<br>IgM EQUIV |         |         | 1          | 1       | 4          | 1          | 1       |

<sup>\*</sup> Sample 019 & 020 were reversed by the testing laboratory

**Table 8:** Details of result classification for those panel samples which were not correctly identified by reporting laboratories for rubella IgM.

#### **Discussion**

#### Measles

The panel was distributed to National and Regional Measles reference laboratories within the WHO global measles laboratory network and 65 laboratories returned results for analysis. The results overall were very encouraging. A score of 100% was achieved by 68% of laboratories. Ninety-six percent of laboratories achieved a score of 90% or greater.

The majority of participants (77 %) used the Dade Behring Enzygnost<sup>®</sup> anti-measles-virus IgM assay for measles diagnosis, facilitating analysis of the variation of reactivity of samples for these laboratories. The number of users of other kits was too few for any meaningful statistical analysis.

Overall there were thirty-four aberrant results, 14 were reported as equivocal. Ideally all equivocal results should be repeated however the limited volume of sample provided to each laboratory may have prevented full investigation of these samples.

Of the remaining twenty aberrant results three samples were not tested, two samples were incorrectly reported twice since the reporting laboratory incorrectly labelled samples numbers 019 and 020 and used two testing methods.

Thus thirteen incorrect results were submitted on 5 panel numbers (004, 014, 016, 018, 020). The true status of sample 014 was measles IgM positive, the remaining four samples were measles IgM negative. Sample 014 which 4 laboratories reported measles IgM negative, was collected 5 days post onset of rash. A nose and throat swab collected at the same time was positive for measles virus RNA by RT- PCR.

Sample 004, collected from a healthy volunteer with no clinical illness was reported by three laboratories as IgM positive. Two of these laboratories used the Seiken assay and one laboratory used the Dade Behring assay.

Three laboratories reported sample 018, also from a normal healthy adult, as positive. Two laboratories used the Novatec assay and one laboratory used the Dade Behring assay. Two other samples were falsely reported as containing measles IgM, one of which was parvovirus IgM positive (sample 016), the other rubella IgM positive (sample 020). These results demonstrate the importance of confirmatory testing when determining measles diagnosis.

Good data reporting is just as important as obtaining the correct result. One laboratory did not submit OD values for the samples tested and 8 laboratories did not submit the cut-off values.

#### Rubella

While this QAP panel was not composed with rubella proficiency testing in mind, it has provided an opportunity for some comparative rubella serological testing on well characterised specimens across the global laboratory network. The number of panel specimens tested for rubella IgM varied as some laboratories tested all specimens, and others only those specimens negative on measles IgM testing.

Sample 013 has been determined to be an unsatisfactory sample for rubella IgM QAP testing since it has been found to be IgM positive by a number of commercial kits but is not from a patient with a clinical illness. This sample was excluded from further analysis. Seventy-two percent of laboratories reported all tested samples correctly, and the remaining laboratories reported only one incorrect result (apart from one laboratory that tested for IgG instead of IgM).

Most of the aberrant results (8) were in the equivocal range. Ideally all equivocal results should be repeated however the limited volume of sample provided to each laboratory may have prevented full investigation of these samples.

Five results from four panel samples (005, 006, 011 & 019) were reported as positive (one laboratory reversed samples 019 & 020). The four other samples were measles IgM positive (3) and parvovirus IgM positive (1).